RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2015

FIRST YEAR [BATCH 2015-18]

CHEMISTRY [Hons]

Date : 14/12/2015 Time : 11 am – 1 pm

-Paper:

Full Marks : 50

[2]

[3]

[2]

[3+1]

[3]

[2]

[Use a separate Answer Book for each Group]

<u>Group – A</u>

[Answer <u>one</u> question from <u>each unit</u>]

<u>Unit - I</u>

- 1. a) Determine the heat capacity at constant volume for H_2O using equipartition principle.
 - b) Draw the qualitative P vs V curve for a real gas and explain the continuity of states defining the critical point of the real gas.
 [3]
 - c) The critical constants for water are 374°C, 221 MPa and 0.0566 Lmol⁻¹. Calculate values of a, b, R using van-der-Waals equation and compare the value of R with correct value. [3]
 - d) If the speed distribution for a gas confined to move in 2-dimensions is given as m_{2}^{2}

$$\frac{dn_{c}}{N} = \left(\frac{m}{k_{B}T}\right)e^{-\frac{mc}{2k_{B}T}}cdc$$
, Calculate the probability of a molecule having kinetic energy greater

than a given value E.

- e) Calculate the number of wall-molecule collisions per m³ per second for O₂ at 25°C and 1 atm pressure. [2]
- a) Write down the expression for energy distribution (3D) according to Maxwell and convert it into 3D speed distribution equation. [3]
 - b) How does the viscosity of a gas change with increase in temperature. Justify.
 - c) Assume that $0.800 \text{ mol of } N_2$ and $0.200 \text{ mol of } O_2$ are contained in 24.45 L at 298 K. [N₂ and O₂ molecules measure roughly 300 pm and 292 pm, respectively]
 - i) Find out z_{0_2} and $Z_{N_2O_2}$.
 - ii) Also calculate λ_{N_2} .
 - d) Give a graphical representation of molecular velocities and its x-component at two different temperatures, for a gas obeying the kinetic theory model and confined to move in x-direction only.

Hence justify qualitatively (without derivation) that the average velocity is equal to zero but not the average speed. [2+2]

<u>Unit - II</u>

- 3. a) A gas obeying the van-der-Waals equation of state undergoes a reversible isothermal volume change from V_1 to V_2 . Obtain the expression for the work W.
 - b) 2L of a gas, initially maintained at 0°C and 10 atm pressure, expands adiabatically against a constant pressure of 1 atm. till equilibrium is reached. Find out the final temperature of the gas, if the heat capacity at constant volume for the gas is 3 cal mol⁻¹.
 - c) For the reaction $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$ at 300K $\Delta H = -68 \cdot 8 \text{ KCal}$. Calculate ΔU for the reaction assuming ideal behaviour of the gases.
 - d) Prove that work (consider pressure volume work only) done in a process cannot be written as a change of state function. [3]

e) A gas is made to undergo the following change of state-

 (P_i, V_i) to (P_f, V_f) in a single step with the external pressure fixed at P_f (isothermally)

 (P_f, V_f) to (P_i, V_i) in a single step with the external pressure fixed at P_i (isothermally) If both the processes were carried out involving infinite number of steps what would have been the amount of net work done?

- 4. a) Define temperature as a consequence of the zeroth law of thermodynamics.
 - b) 1 mole of an ideal monoatomic gas is compressed adiabatically at a constant pressure of 1.0 MPa till equilibrium is reached. If the gas initially was at 300K and 0.1 MPa pressure. Calculate the

final temperature of gas, W, and
$$\Delta H$$
. (Use $C_v = \frac{3}{2}R$). [3]

c) Consider the following reaction : $aA+bB \rightarrow cC+dD$. Establish a relation between ΔH of the reaction at two different temperatures T_1 and T_2 in terms of the individual molar heat capacities of the reactants and products.

d) Derive the equation for the work done in an isothermal, reversible compression of one mole of a gas obeying the van der Waal's equation of state.

e) Derive an expression for $(C_P - C_V)$ for a gas obeying P(V - b) = RT. Given $\left(\frac{\partial u}{\partial v}\right)_T = 0$ for the

gas.

<u>Group – B</u>

[Answer <u>one</u> question from <u>each unit</u>]

<u>Unit - I</u>

- 5. a) i) Write down the structure of the following compound : 2<u>R</u>, 3<u>R</u> - 2, 3 - dihydroxy-3-methyl pentanoic acid [1.5] ii) Draw Fisher projection formula of (2<u>R</u>, 3<u>S</u>)-3-phenyl-2-butanol and convert it into flying wedge notation. [1.5]
 b) An optically pure sample of *R*-(-)-2-butanol shows specific rotation of -13.6°. What relative molar proportion of <u>S</u>-(+)-2-butanol and <u>R</u>-(-)-2-butanol would give a specific rotation of +6.8°? [3]
 c) Indicate the symmetry elements present in (i) 1,3-dichloroallene (ii) CHCl₃. [2]
 - d) What is gauche-butane interaction? Draw the conformers of 2-methylbutane for rotation about $C_2 C_3$ bond in Newman projection formula and compare their relative stabilities. [4]

e) Explain whether the following compounds are resolvable or not.

i)
$$\frac{H}{Me} > C = C = C < \frac{H}{Me}$$
 ii) $Et = 1 + R$

f) Assign Re/Si descriptors for the enantiotopic faces of acetaldehyde. [1]

- 6. a) How would you resolve a racemic alcohol?
 - b) Draw all possible stereoisomers of $CH_3CH = CH CHBr CH = CHCH_3$ and mention whether they are 'R' or 'S' and optically active or not. [4]
 - c) Identify H_A and H_B in the following structure as homotopic, enantiotopic or diastereotopic and explain [1]

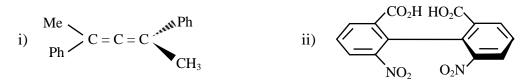
$$H_{A} \longrightarrow OH$$

HO H_{B}
CO₂H

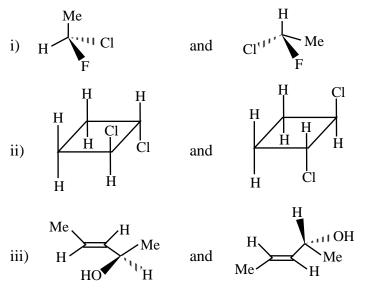
[2]

[2]

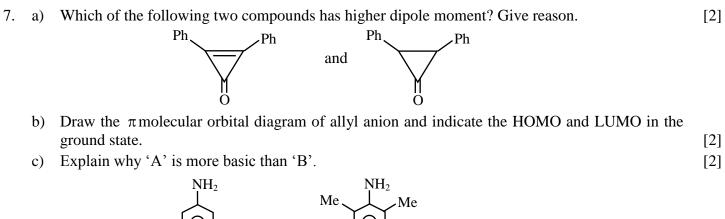
[2]

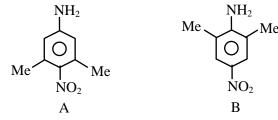

[2]

[3]


[2]

[2]


d) Assign R/S configuration to the following compounds :



- e) Comment on the stereogenicity of C-3 centre in all the stereoisomers of 2,3,4-tri-hydroxyglutaric acid.
- f) Label the following molecules as homomers, enantiomers or diastereomers :

<u>Unit - II</u>

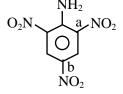
d) Identify the following species as aromatic, non-aromatic or antiaromatic with reasons.

e) Difference of molecular weight alone can not explain the large difference in boiling points between benzene (78°C) and nitrobenzne (211°C). Explain which other factor is responsible for this large difference of boiling points.

[2]

[2]

[2]


[3]

[3×1]

- 8. a) Why cyclopropylmethyl carbocation shows exceptional stability?
 - b) Draw the resonating structure of the following two compounds and indicate the most stable structure in each case. [2]

i)
$$\begin{bmatrix} H \\ B \\ B \\ M \\ H \end{bmatrix}$$
 ii) $CH_3 - C = O$

- c) Draw the orbital picture of $CH_3CH = C = O$.
- d) Compare which C-N bond between 'a' or 'b' has shorter bond length in the following compound. [2]

e) Compare acid strength of the following molecules :

$$\bigcirc 0 \\ \square \\ -CCH_3 \qquad \bigcirc 0 \\ \square \\ -CCH_3$$

_____ × _____

[2]

[2]

[2]